安全生产是社会发展永恒的主题,是一切工作的真谛。
对于工业生产企业而言,由于业务连续性强、系统复杂,大量生产设备相互联系、耦合紧密,而且具有功率大、运转速度高的特点。安全生产更是保证从业人员的人身安全与健康,设备和设施免受损坏,环境免遭破坏,保证生产经营活动得以顺利进行的必要条件。
对于石油石化行业属于危险、危害因素众多的高危行业,安全生产形势依然十分严峻。
人工智能在安全生产领域的作用显著提升
以人工智能技术为手段,精准把握 “高精度质量检测,大范围安全管理”的行业需求,应用机器视觉、体态识别、异常行为分析预警等人工智能技术,在安全防范、监管实施、质量检测和生产流程管理方面,实现实时监控、自动发现问题、主动预警,提高了过去依靠肉眼或“远水救不了近火”的窘境,确保生产安全高效、劳动力分配得当、保持低成本优势,为协助工业企业“降本增效、安全生产”,等等智能化应用,已经逐渐在工业生产安全领域发挥着重要作用,改变了以往安全管理工作“事后处理”的模式,转向对危险的预先识别、分析和控制的科学化管理方式,最终实现事先控制,预防为主,关口前移,防患于未然的目的。
通常情况下,石化企业历年来已分期分批投建了视频监控系统,基本实现每个生产装置和重点部位都已安装监控摄像机。传统机器视觉检测(如比对法)解决了人工目检的一些做不了、做不好以及人做成本高的问题。但依然存在安全隐患:
1、现场作业监管过程中,由于人力、物力等各种原因,各环节相关管理人员有时会无法到施工现场监督监护、审核确认作业票证,或到了现场也是象征性的停留很短时间,最终难以满足当前作业许可制度规范的要求。
2、尽管已经实现了对作业票证的电子审批全过程管理,但是在施工现场工人的不规范行为、设备设施的违规使用等方面也很难进行监管,即使有视频监控,一般也仅绝限于在控制室进行人工识别监控,甚至仅能监控到主要生产装置及要害部位,不能实现在任何生产区域发生不规范作业时进行监控的要求。
3、对承包商的劳务人员的监管也非常重要,在承包商施工人员进入现场前,实行了安全教育培训、职业技能审查等工作,但是真正到现场施工时,也存在换人替代等安全隐患。
与传统机器视觉检测方法相比,基于人工智能的检测方法将在减少对光照、摆放位置、传输速率等外在因素依赖程度,尤其是对一些较难识别的行为动作的大量图像进行神经网络学习,在充分训练的情况下,将为各种行为动作和物体的主要和非主要特征提供更高的识别准确率。